Abstract:Learned Sparse Retrieval (LSR) is an effective IR approach that exploits pre-trained language models for encoding text into a learned bag of words. Several efforts in the literature have shown that sparsity is key to enabling a good trade-off between the efficiency and effectiveness of the query processor. To induce the right degree of sparsity, researchers typically use regularization techniques when training LSR models. Recently, new efficient -- inverted index-based -- retrieval engines have been proposed, leading to a natural question: has the role of regularization changed in training LSR models? In this paper, we conduct an extended evaluation of regularization approaches for LSR where we discuss their effectiveness, efficiency, and out-of-domain generalization capabilities. We first show that regularization can be relaxed to produce more effective LSR encoders. We also show that query encoding is now the bottleneck limiting the overall query processor performance. To remove this bottleneck, we advance the state-of-the-art of inference-free LSR by proposing Learned Inference-free Retrieval (Li-LSR). At training time, Li-LSR learns a score for each token, casting the query encoding step into a seamless table lookup. Our approach yields state-of-the-art effectiveness for both in-domain and out-of-domain evaluation, surpassing Splade-v3-Doc by 1 point of mRR@10 on MS MARCO and 1.8 points of nDCG@10 on BEIR.
Abstract:Learned Sparse Retrieval (LSR) has traditionally focused on small-scale encoder-only transformer architectures. With the advent of large-scale pre-trained language models, their capability to generate sparse representations for retrieval tasks across different transformer-based architectures, including encoder-only, decoder-only, and encoder-decoder models, remains largely unexplored. This study investigates the effectiveness of LSR across these architectures, exploring various sparse representation heads and model scales. Our results highlight the limitations of using large language models to create effective sparse representations in zero-shot settings, identifying challenges such as inappropriate term expansions and reduced performance due to the lack of expansion. We find that the encoder-decoder architecture with multi-tokens decoding approach achieves the best performance among the three backbones. While the decoder-only model performs worse than the encoder-only model, it demonstrates the potential to outperform when scaled to a high number of parameters.
Abstract:Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
Abstract:In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
Abstract:We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
Abstract:Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR).
Abstract:Set compositional and negated queries are crucial for expressing complex information needs and enable the discovery of niche items like Books about non-European monarchs. Despite the recent advances in LLMs, first-stage ranking remains challenging due to the requirement of encoding documents and queries independently from each other. This limitation calls for constructing compositional query representations that encapsulate logical operations or negations, and can be used to match relevant documents effectively. In the first part of this work, we explore constructing such representations in a zero-shot setting using vector operations between lexically grounded Learned Sparse Retrieval (LSR) representations. Specifically, we introduce Disentangled Negation that penalizes only the negated parts of a query, and a Combined Pseudo-Term approach that enhances LSRs ability to handle intersections. We find that our zero-shot approach is competitive and often outperforms retrievers fine-tuned on compositional data, highlighting certain limitations of LSR and Dense Retrievers. Finally, we address some of these limitations and improve LSRs representation power for negation, by allowing them to attribute negative term scores and effectively penalize documents containing the negated terms.
Abstract:Learned Sparse Retrieval (LSR) models use vocabularies from pre-trained transformers, which often split entities into nonsensical fragments. Splitting entities can reduce retrieval accuracy and limits the model's ability to incorporate up-to-date world knowledge not included in the training data. In this work, we enhance the LSR vocabulary with Wikipedia concepts and entities, enabling the model to resolve ambiguities more effectively and stay current with evolving knowledge. Central to our approach is a Dynamic Vocabulary (DyVo) head, which leverages existing entity embeddings and an entity retrieval component that identifies entities relevant to a query or document. We use the DyVo head to generate entity weights, which are then merged with word piece weights to create joint representations for efficient indexing and retrieval using an inverted index. In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines.
Abstract:TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).
Abstract:This study aims to develop models that generate corpus informed clarifying questions for web search, in a way that ensures the questions align with the available information in the retrieval corpus. We demonstrate the effectiveness of Retrieval Augmented Language Models (RAG) in this process, emphasising their ability to (i) jointly model the user query and retrieval corpus to pinpoint the uncertainty and ask for clarifications end-to-end and (ii) model more evidence documents, which can be used towards increasing the breadth of the questions asked. However, we observe that in current datasets search intents are largely unsupported by the corpus, which is problematic both for training and evaluation. This causes question generation models to ``hallucinate'', ie. suggest intents that are not in the corpus, which can have detrimental effects in performance. To address this, we propose dataset augmentation methods that align the ground truth clarifications with the retrieval corpus. Additionally, we explore techniques to enhance the relevance of the evidence pool during inference, but find that identifying ground truth intents within the corpus remains challenging. Our analysis suggests that this challenge is partly due to the bias of current datasets towards clarification taxonomies and calls for data that can support generating corpus-informed clarifications.